

ProSimTM 2/3 Vital Signs Simulator

Users Manual

FBC 0038 January 2013, Rev. 1 © 2013 Fluke Corporation. All rights reserved. Specifications are subject to change without notice. All product names are trademarks of their respective companies.

Warranty and Product Support

Fluke Biomedical warrants this instrument against defects in materials and workmanship for one year from the date of original purchase OR two years if at the end of your first year you send the instrument to a Fluke Biomedical service center for calibration. You will be charged our customary fee for such calibration. During the warranty period, we will repair or at our option replace, at no charge, a product that proves to be defective, provided you return the product, shipping prepaid, to Fluke Biomedical. This warranty covers the original purchaser only and is not transferable. The warranty does not apply if the product has been damaged by accident or misuse or has been serviced or modified by anyone other than an authorized Fluke Biomedical service facility. NO OTHER WARRANTIES, SUCH AS FITNESS FOR A PARTICULAR PURPOSE, ARE EXPRESSED OR IMPLIED. FLUKE SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OR LOSSES, INCLUDING LOSS OF DATA, ARISING FROM ANY CAUSE OR THEORY.

This warranty covers only serialized products and their accessory items that bear a distinct serial number tag. Recalibration of instruments is not covered under the warranty.

This warranty gives you specific legal rights and you may also have other rights that vary in different jurisdictions. Since some jurisdictions do not allow the exclusion or limitation of an implied warranty or of incidental or consequential damages, this limitation of liability may not apply to you. If any provision of this warranty is held invalid or unenforceable by a court or other decision-maker of competent jurisdiction, such holding will not affect the validity or enforceability of any other provision.

7/07

Notices

All Rights Reserved

© Copyright 2012, Fluke Biomedical. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language without the written permission of Fluke Biomedical.

Copyright Release

Fluke Biomedical agrees to a limited copyright release that allows you to reproduce manuals and other printed materials for use in service training programs and other technical publications. If you would like other reproductions or distributions, submit a written request to Fluke Biomedical.

Unpacking and Inspection

Follow standard receiving practices upon receipt of the instrument. Check the shipping carton for damage. If damage is found, stop unpacking the instrument. Notify the carrier and ask for an agent to be present while the instrument is unpacked. There are no special unpacking instructions, but be careful not to damage the instrument when unpacking it. Inspect the instrument for physical damage such as bent or broken parts, dents, or scratches.

Technical Support

For application support or answers to technical questions, either email <u>techservices@flukebiomedical.com</u> or call 1-800- 850-4608 or 1-440-248-9300. In Europe, email <u>techsupport.emea@flukebiomedical.com</u> or call +31-40-2965314.

Claims

Our routine method of shipment is via common carrier, FOB origin. Upon delivery, if physical damage is found, retain all packing materials in their original condition and contact the carrier immediately to file a claim. If the instrument is delivered in good physical condition but does not operate within specifications, or if there are any other problems not caused by shipping damage, please contact Fluke Biomedical or your local sales representative.

Returns and Repairs

Return Procedure

All items being returned (including all warranty-claim shipments) must be sent freight-prepaid to our factory location. When you return an instrument to Fluke Biomedical, we recommend using United Parcel Service, Federal Express, or Air Parcel Post. We also recommend that you insure your shipment for its actual replacement cost. Fluke Biomedical will not be responsible for lost shipments or instruments that are received in damaged condition due to improper packaging or handling.

Use the original carton and packaging material for shipment. If they are not available, we recommend the following guide for repackaging:

- Use a double-walled carton of sufficient strength for the weight being shipped.
- Use heavy paper or cardboard to protect all instrument surfaces. Use nonabrasive material around all projecting parts.
- Use at least four inches of tightly packed, industry-approved, shock-absorbent material around the instrument.

Returns for partial refund/credit:

Every product returned for refund/credit must be accompanied by a Return Material Authorization (RMA) number, obtained from our Order Entry Group at 1-440-498-2560.

Repair and calibration:

To find the nearest service center, go to www.flukebiomedical.com/service or

In the U.S.A.: Cleveland Calibration Lab Tel: 1-800-850-4608 x2564 Email: globalcal@flukebiomedical.com

Everett Calibration Lab Tel: 1-888-99 FLUKE (1-888-993-5853) Email: <u>service.status@fluke.com</u>

In Europe, Middle East, and Africa: Eindhoven Calibration Lab Tel: +31-40-2675300 Email: ServiceDesk@fluke.com

In Asia: Everett Calibration Lab Tel: +425-446-6945 Email: <u>service.international@fluke.com</u>

To ensure the accuracy of the Product is maintained at a high level, Fluke Biomedical recommends the product be calibrated at least once every 12 months. Calibration must be done by qualified personnel. Contact your local Fluke Biomedical representative for calibration.

Certification

This instrument was thoroughly tested and inspected. It was found to meet Fluke Biomedical's manufacturing specifications when it was shipped from the factory. Calibration measurements are traceable to the National Institute of Standards and Technology (NIST). Devices for which there are no NIST calibration standards are measured against in-house performance standards using accepted test procedures.

WARNING

Unauthorized user modifications or application beyond the published specifications may result in electrical shock hazards or improper operation. Fluke Biomedical will not be responsible for any injuries sustained due to unauthorized equipment modifications.

Restrictions and Liabilities

Information in this document is subject to change and does not represent a commitment by Fluke Biomedical. Changes made to the information in this document will be incorporated in new editions of the publication. No responsibility is assumed by Fluke Biomedical for the use or reliability of software or equipment that is not supplied by Fluke Biomedical, or by its affiliated dealers.

Manufacturing Location

The ProSim[™] 2/3 Vital Signs Simulator is manufactured at Fluke Biomedical, 6920 Seaway Blvd., Everett, WA, U.S.A.

Table of Contents

Title

Page

Introduction	1
Safety Information	1
Accessories	4
Product Familiarization	5
Battery Eliminator	8
How to Turn On the Product	8
Operation	9
Cardiac Functions	10
ECG Functions	10
Pacemaker Signals	13
Arrhythmia Function	13
ECG Tests	14
How to Set a Performance Wave Output	14
R-Wave Detection Test	14
Blood Pressure Function	15
How to Set the BP Sensitivity	15
How to Set Up a BP Channel	15
Dynamic BP Waveforms	15
How to Add a Respiration Artifact to the BP Waveform	17
Cardiac Output	17

Cardian Output Test Set Lin	17
Carulac-Oulput Test Set Op	17
How to Simulate Injectate Failure and Leit-to-Right Shuht Fault	19
How to Simulate Output from a Calibrated Pulse Signal	19
Fetal/Maternal Function	21
Simulate Fixed Fetal Heart Rate (FHR)	21
How to Simulate a Periodic FHR with Intrauterine Pressure (IUP)	21
Other Functions	24
Respiration Functions	24
Temperature	24
Remote Operation	26
Remote Commands	27
General Commands	28
Function Commands	28
ECG Functions	28
Arrhythmia Functions	31
ECG Test Functions	32
Respiration Function Commands	35
Blood Pressure Function Commands	36
Other Function Commands	40
Maintenance	41
General Maintenance	41
Battery Replacement	42
General Specifications	43
Detailed Specifications	43
ECG Waveform	43
Pacamakar Wayoform	11
Arrhythmia	44
Annyunnia	44
	40
Respiration	45
	45
	47
Cardiac Output (ProSim 3 Only)	47
Fetal / Maternal-ECG (ProSim 3 Only)	47
Computer Setup	48

List of Tables

Table

Title

Page

1.	Symbols	3
2.	Standard Accessories	4
3.	Optional Accessories	4
4.	Front-Panel Controls and Connectors	6
5.	Top-Panel Connectors	7
6.	Product Functions	9
7.	Dynamic BP Waveforms by BP Channel	16
8.	Error Codes	27
9.	Product Control States and Modes	28
10.	General Commands	28
11.	ECG Function Commands	28
12.	Pacemaker Waveform Commands	30
13.	Arrhythmia Function Commands	31
14.	ECG Test Commands	33
15.	Respiration Function Commands	35
16.	Blood Pressure Function Commands	37
17.	Other Function Commands	40

ProSi	m	тм	2/3
Users	N	1ar	nual

List of Figures

Figure

Title

Page

1. 2.	Front-Panel Controls and Connectors Top-Panel Connectors	5 7
3.	Battery Eliminator Connections	8
4.	Power-Up Screen	8
5.	Home Screen	9
6.	Home Screen – Cardiac Function	9
7.	Cardiac Output Screen	10
8.	ECG Screen	11
9.	ECG Test Connections	12
10.	Arrhythmia Screen	13
11.	Cardiac Output Injectate CI-3 Adapter	18
12.	Cardiac Output Connections	20
13.	Fetal/Maternal Connections	23
14.	Temperature Simulation Connections	25
15.	Remote Operation Connections	26
16.	Battery Replacement	42

ProSi	m	тм	2/3
Users	N	1ar	nual

Introduction

▲ Marning

To prevent possible electrical shock, fire, or personal injury, read all safety information before you use the Product.

The ProSim[™] 2 and ProSim[™] 3 Vital Signs Simulators (the Product) are electronic signal sources used to measure the performance of patient monitors. The Product simulates:

- ECG (with and without arrhythmias)
- Respiration
- Blood pressure
- Temperature
- Cardiac output (ProSim 3 only)
- Fetal/Maternal ECG and IUP (ProSim 3 only)

The ProSim[™] 3 is shown in all illustrations.

Safety Information

A **Warning** identifies conditions and procedures that are dangerous to the user. A **Caution** identifies conditions and procedures that can cause damage to the Product or the equipment under test.

Table 1 is a list of symbols used on the Product and in this manual.

A Warning

To prevent possible electrical shock, fire, or personal injury:

- Use the Product only as specified, or the protection supplied by the Product can be compromised.
- Do not connect the Product to a patient or equipment connected to a patient. The Product is intended for equipment analysis only. Do not use the Product for diagnostics, treatment, or other capacity where the Product touches a patient.
- Remove the batteries if the Product is not used for an extended period of time, or if stored in temperatures above 50 °C. If the batteries are not removed, battery leakage can damage the Product.
- Replace the batteries when the low battery indicator shows to prevent incorrect measurements.

- Carefully read all instructions.
- Do not use the Product around explosive gas, vapor, or in damp or wet environments.
- Do not use and disable the Product if it is damaged.
- Do not use the Product if it operates incorrectly.
- Examine the case before you use the Product. Look for cracks or missing plastic. Carefully look at the insulation around the terminals.
- Read all safety information before you use the Product.
- Remove all probes, test leads, and accessories before the battery door is opened.
- Remove all probes, test leads, and accessories that are not necessary for the measurement.
- Batteries contain hazardous chemicals that can cause burns or explode. If exposure to chemicals occurs, clean with water and get medical aid.

Symbol	Description	Symbol	Description
⚠	Important information. Refer to manual.		Hazardous Voltage
CE	Conforms to European Union directives	c∰.®	Conforms to relevant North American Safety Standards.
N10140	Conforms to relevant Australian EMC requirements	-	Battery
K	Conforms to relevant South Korean EMC Standards	X	This product complies with the WEEE Directive (2002/96/EC) marking requirements. The affixed label indicates that you must not discard this electrical/electronic product in domestic household waste. Product Category: With reference to the equipment types in the WEEE Directive Annex I, this product is classed as category 9 "Monitoring and Control Instrumentation" product. Do not dispose of this product as unsorted municipal waste. Go to Fluke's website for recycling information.

Table 1. Symbols

Accessories

Available Product Accessories are shown in Tables 2 and 3.

Table 2. Standard Accessories

Item	Fluke Biomedical Part Number		
ProSim 2/3 Safety Information	4308669		
ProSim 2/3 Users Manual CD	4253822		
IBP Cable, Unterminated	2392173		
ProSim 2/3 Carrying Case	2248623		
CI-3 Cable Assembly (Cardiac Output Box), 3010-0289FG	2392199		
USB Mini-B Cable	1671807		

Table 3. Optional Accessories

Item		Fluke Biomedical Part Number
Tomporatura Cabla	YSI 400 Series (UT-4)	2523334
Temperature Cable	YSI 700 (UT-2)	2199019
Cardiac Output Marq Eagle (Cardiac	4022300	
AC/DC Power Supply Set		4318692

Product Familiarization

Table 4 is a list of controls and connectors on the Product shown in Figure 1.

Figure 1. Front-Panel Controls and Connectors

Table 4. Front-Panel Controls and Connectors

Item	Name	Description	
1	Display	LCD Display	
2	Navigation buttons	Cursor control buttons for navigating menus and lists.	
3	Enter button	Sets the highlighted function.	
4	Power button	Turns on and off the Product.	
5	DC Power Connector	Connector for the AC/DC power supply.	
6	Cardiac Output Connector	Connector to the Cardiac input of the patient monitor.	
7	Invasive Blood Pressure Connectors	Four connectors to the Invasive Blood Pressure (IBP) input of the patient monitor.	
8	Temperature Connector	Connector to the Temperature input of the patient monitor.	

Table 5 is a list of connectors on the top-panel of the Product shown in Figure 2.

Figure 2. Top-Panel Connectors

Table 5. Top-Panel Connectors

ltem	Name	Description	
1	ECG Posts	Connection posts for ECG leads from the patient monitor.	
(2)	Mini-Series B Connector	For firmware updates and calibration.	

Battery Eliminator

The Product can operate on its two 9-Volt batteries or from mains power. To run on mains power, connect the Product to the optional AC/DC Power Supply as shown in Figure 3.

Figure 3. Battery Eliminator Connections

How to Turn On the Product

Push (1) on the front panel to turn on the Product. The power-up screen shows in the display (Figure 4).

Figure 4. Power-Up Screen

When the self test is complete and no errors are sensed, the home screen shows in the display (Figure 5).

Operation

All Product functions are shown in the home screen. See Figure 5. To set parameters for a function, push the navigation buttons $(\widehat{\P}, \widehat{\mathbb{P}}, \textcircled{\infty}, \textcircled{\infty})$ to move the highlight to a function icon. Push **ENTER**. Table 6 is a list of Product functions shown in the home screen.

Table	6.	Product	Functions
-------	----	---------	------------------

ICON	Description	ICON	Description
ECG	ECG Waveform	PACE	Pacemaker
RESP	Respiration	TEMP	Temperature
BP	Blood Pressure	CO	Cardiac Output
ARRY	Arrhythmia	FE/MA	Fetal/Maternal
PERF	Performance Wave	SETUP	Setup

To set a parameter of a function:

1. Push the navigation buttons to move the highlight to a function. Figure 6 shows the cardiac output icon highlighted.

hal005.bmp

Figure 6. Home Screen – Cardiac Function

2. Push ENTER. The cardiac output screen in Figure 7 shows in the display.

Figure 7. Cardiac Output Screen

- 3. To set the injection temperature, push [,] ♥ to move the highlight to the **INJ Temp** value.
- 4. Push () or () to change the value for the highlighted parameter. The adjusted simulated value changes the output signal immediately.

All parameter values in the Product are set with this procedure. For the parameters that cannot be set, the highlight will not move to the value of that parameter.

There are two procedures to move between Product functions. When the home screen is not shown in the display, **Prev**, **Home**, and **Next** show along the bottom of the display. To move to the home screen, move the highlight to **Home** and push **ENTER**. The home screen shows all the Product functions. See Figure 5.

An alternative to the Home screen is to use the **Prev** and **Next** selections. The software lets you move through the Product functions sequentially. The function sequence is:

ECG, Respiration, Blood Pressure, Arrhythmias, Performance Wave, Pacemaker Wave, Temperature, Cardiac Output, Fetal Maternal, and Setup.

For example, look at the Cardiac Output screen in Figure 7. When you move the highlight to **Prev** and push **ENTER**, the display shows the Temperature screen. When you highlight **Next** and push **ENTER** in the Cardiac Output screen, the display shows the Fetal/Maternal screen.

Cardiac Functions

The cardiac functions of the Product are ECG, Arrhythmia, Blood Pressure, Pacemaker, Cardiac Output, and Performance Waves.

ECG Functions

The ECG function of the Product lets you set five parameters of an ECG waveform: Rate, Amplitude, Patient Type, ST, and Artifact. Figure 9 shows a typical setup for an ECG test on a patient monitor.

To set an ECG parameter:

- 1. In the **Home** screen, push the navigation buttons to move the highlight to ECG.
- 2. Push ENTER to show the ECG screen in Figure 8 in the display.

Figure 8. ECG Screen

See the Function Navigation and Parameter Selection section to learn how to set parameter values. See the detailed specifications for the range of parameter values. These parameters change the waveform that appears on the ECG posts along the top of the Product.

Figure 9. ECG Test Connections

Pacemaker Signals

The Product can simulate heart signals with pacemaker control signals. To set the waveform, amplitude, and width of the pacemaker signal:

- 1. In the **Home** screen, push the navigation buttons to highlight PACE.
- 2. Push ENTER to show the **Pacemaker Waves** screen in the display.
- Use the parameter selection procedure described in the Operation section to set the parameters of the pacemaker signal.

See the detailed specifications for the range of parameter values.

Arrhythmia Function

The Product can simulate heart arrhythmias. To start an ECG arrhythmia simulation:

- 1. In the **Home** screen, push the navigation buttons to highlight ARRY.
- 2. Push ENTER to show the Arrhythmias screen in the display. See Figure 10.

Arrhythmias	
Type: Off	
SV PREM	VENT COND
Prev Hon	ne Next

Figure 10. Arrhythmia Screen

The simulated arrhythmias are grouped into four categories: Supraventricular, Premature, Ventricular, and Conduction Defect. See the specifications to learn the arrhythmias in each group.

- 3. Push ④ or ⓑ to move the highlight to an arrhythmia group icon.
- 4. Push ENTER.
- 5. Use the parameter selection procedure described in the Operation section to set the arrhythmia.

When the type parameter has been set to an arrhythmia, the group icon of the group the arrhythmia belongs to has a thicker border around it.

```
ProSim™ 2/3
Users Manual
```

To stop an arrhythmia simulation:

- 1. Highlight one of the group icons.
- 2. Push ENTER.
- 3. Push () or () until the type value shows Off.

ECG Tests

The Product can source pulse, square, triangle, and sine waveforms that can be used to verify patient monitors and other ECG equipment. These waveforms are used in tests for frequency response, sensitivity, gain drift, internal calibration, stylus damping, paper speed, linearity, sweep speed, and more.

The Product also sources an R-wave that is used to verify that ECG equipment can detect the R-wave part of an ECG signal.

Note

When the Product is set to source a performance waveform, respiration and blood pressure simulations are disabled.

How to Set a Performance Wave Output

To set a performance wave on the ECG terminals:

- 1. In the **Home** screen, push the navigation buttons to highlight PERF.
- 2. Push ENTER to show the Performance Wave screen in the display.

3. Use the parameter selection procedure described in the Operation section to set the frequency, shape, and amplitude of the performance waveform.

See the detailed specifications for the range of parameter values.

R-Wave Detection Test

You can set the Product to source a normal heart ECG signal and vary the amplitude and width of the R-wave portion of the waveform. To set the R-wave portion of an ECG waveform:

- 1. In the **Home** screen, push the navigation buttons to highlight PERF.
- 2. Push ENTER to show the **Performance Wave** screen in the display.
- 3. Push the navigation buttons to highlight RWDET.
- 4. Push ENTER to show the **R-Wave Detection** screen in the display.
- 5. Use the parameter selection procedure described in the Operation section to set the beats per minute (bpm), width, and amplitude of the R-wave.

Blood Pressure Function

The Product simulates dynamic Blood Pressure (BP) waveforms that synchronize with all normal sinus rhythm rates and track all simulated arrhythmias. You can set each of the four BP channels independently. Each channel simulates a bridge pressure transducer. A respiration artifact can be injected into each BP channel waveform.

How to Set the BP Sensitivity

The sensitivity of the four BP channels must be set to match the sensitivity of the patient monitor. To set BP channel sensitivity:

- 1. In the **Home** screen, push the navigation buttons to highlight SETUP.
- 2. Push ENTER to show the Setup screen in the display.
- 3. Use the parameter selection procedure described in the Operation section to set the **BP Sense** parameter.

How to Set Up a BP Channel

To set up one of the four BP channels:

- 1. In the **Home** screen, push the navigation buttons to highlight BP.
- 2. Push ENTER to show the **Blood Pressure** screen in the display.
- 3. Push [,] ⊂ or ⁽ to highlight the BP channel you want to set up.
- 4. Push **ENTER** to show the **Blood Pressure** screen for the channel in the display.

- 5. Before you start the BP simulation, you must set the simulated pressure to 0 mmHg. Push the navigation buttons to highlight ZERO.
- 6. Push ENTER. The static pressure parameter is set to 0 mmHg and the dynamic and artifact variables are set to Off.
- 7. Zero the patient monitor to set the baseline for future simulations.
- 8. Use the parameter selection procedure described in the Operation section to set the Blood Pressure channel parameters.

Dynamic BP Waveforms

The Dynamic parameter is used to simulate the various pressures that are found around the heart and associated blood vessels. The dynamic waveforms have a normal sinus rhythm at 80 bpm. Only the systolic and diastolic pressures change for each dynamic waveform.

All the dynamic waveforms are not available on all four BP channels. Table 7 is a list of the dynamic BP waveforms with a check to indicate which BP channel each waveform can be set on.

Note

See the Swanz-Ganz Procedure section to learn more on how the do this serial simulation.

Dynamic Waveform		DD 4	550	550	554	
Name	Pressures	BP1	BP2	BP3	BF	' 4
Arterial	120/80	\checkmark		\checkmark		
Radial Artery	120/80	\checkmark	\checkmark	\checkmark		
Left Ventricle	120/00	\checkmark	\checkmark	\checkmark		
Left Atrium	14/4		\checkmark	\checkmark		
Right Atrium	15/10		\checkmark	\checkmark	\checkmark	
Right Ventricle	25/00	\checkmark	\checkmark	\checkmark	\checkmark	anz nz sdure
Pulmonary Artery	25/10		\checkmark	\checkmark	\checkmark	n Sw Ga
Pulmonary Wedge	10/2		\checkmark	\checkmark	\checkmark]= @

Table 7. Dynamic BP Waveforms by BP Channel

How to Add a Respiration Artifact to the BP Waveform

When the dynamic parameter for a blood pressure channel is set to a value other than off, the Product will let you move the highlight to the artifact parameter. With the highlight on the artifact value, push \bigcirc or to toggle the value between on and off.

Each BP channel has a different range of pressure change due to the respiration artifact.

Cardiac Output

The Cardiac Output function electronically simulates the dynamic temperature changes of blood that is cooled by an injectate.

Note

Cardiac output measurement devices that use the Fick dye injection, Doppler ultrasonography, and bioimpedance are not addressed or intended for this Product.

Cardiac-Output Test Set Up

To simulate cardiac output with the Product, a CI-3 adapter is necessary to connect the monitor to the Product. The adapter is shown in Figure 11. Note that the injectate temperature thermistor has to be cut off at the EUT cable to install the general-purpose connector.

This module has connections for the cardiac output measurement under test and simulates the injectate temperature (IT) thermistors at 0 °C or 24 °C. Of the two connectors on the CI-3 module/cable, the smaller 3-pin

connector is for catheter blood temperature (BT) and is standard on most monitors.

Note

This 3-pin catheter BT connector is compatible with the standard Baxter (Edwards) BT catheter and equivalent catheters available from other manufacturers such as Viggo-SpectraMed and Abbott (Sorenson).

The larger 4-pin connector supplies the simulated injectate temperature. The 10-turn 100 k Ω potentiometer enables adjustment of the injectate temperature to 0 °C or 24 °C.

The 4-pin IT thermistors connector is not standard on all monitors. A general function connector that you can connect to the device under test (DUT) injectate cable is also available.

Note

A DUT cardiac output cable changed for this test must not be used in clinical applications.

Figure 11. Cardiac Output Injectate CI-3 Adapter

For cardiac output simulation, use the supplied CI-3 adapter to connect the Product to the Device Under Test (DUT). (see Figure 12). If necessary, use the general-purpose connector.

To do a cardiac output test:

- 1. Connect the patient monitor to the cardiac output adapter.
- 2. Connect the adapter to the Product (Figure 12).

- 3. Set up the patient monitor to:
 - Catheter size: 7 F
 - Injectate volume: 10 cc
 - Injectate temperature: 0 °C or 24 °C
 - Computational constant: 0.542 for 0 °C injectate or 0.595 for 24 °C injectate
- 4. In the **Home** screen of the Product, push the navigation buttons to highlight <u>co</u>.
- 5. Push ENTER to show the cardiac output screen.
- 6. Use the parameter selection procedure to set the cardiac output parameters for the test. See the detailed specifications to learn the range of each parameter.
- 7. Push the navigation buttons to highlight START.
- 8. Push **ENTER** to start the test. The simulation stops automatically.

To stop the simulation, highlight **STOP** and push **ENTER**.

How to Simulate Injectate Failure and Left-to-Right Shunt Fault

The Cardiac Output function can simulate an injectate failure or left-to-right shunt fault. To set either of these two failures:

- 1. Push riangle or riangle to highlight the **Wave** value.
- 2. Push () or () until **FAULTY INJ** or **L** to **R SHUNT** shows in the display.
- 3. Push the navigation buttons to highlight START.

4. Push ENTER to start the test.

How to Simulate Output from a Calibrated Pulse Signal

The Product sources a waveform that simulates an injectate temperature of 0 °C or 24 °C with a step of 1.5 °C for 1 second as a test for a cardiac-output monitor. To output a calibration pulse:

- 2. Push () or () until CAL PULSE shows in the display.
- 4. Push ENTER to start the test.

Figure 12. Cardiac Output Connections

Fetal/Maternal Function

The Product can simulate fetal and maternal electrocardiograms (ECG) that occur while in labor. Pressure waveforms of uterine contractions can also be simulated.

The fetal/maternal ECG signal is sourced on the ECG posts of the Product. The maternal signal is a P-QRS-T wave fixed at 80 bpm with an amplitude that is half the value of the amplitude parameter. The fetal signal is a narrow R-wave at full amplitude. The fetal and maternal signals are combined to make a composite signal.

Simulate Fixed Fetal Heart Rate (FHR)

To set a fixed fetal heart rate:

- 1. In the **Home** screen of the Product, push the navigation buttons to highlight **FE/MA**.
- 2. Push ENTER to show the Fetal Maternal screen.
- 3. Use the parameter selection procedure to set the **FHR** parameter.

The set FHR value shown in the display is output and continues on the output until the value is changed.

How to Simulate a Periodic FHR with Intrauterine Pressure (IUP)

The Product can simulate intrauterine pressure (IUP) of a contraction of the uterus in childbirth. The IUP wave is a bell shaped curve that starts at zero and increases to 90 mmHg and decreases to zero over a 90-second period.

The frequency of contractions can be set to manual, 2, 3 or 5 minutes.

The fetal heart rate starts at 140 bpm and changes with blood pressure. Fetal heart rate and IUP are shown in the display.

The Product simulates three preconfigures waveforms for periodic FHR:

Early deceleration – The fetal heart rate follows the intrauterine pressure (no lag). FHR starts at 140 bpm, slows to 100 bpm at the intrauterine pressure peak and then returns to 140 bpm at the IUP decreases back to zero.

Late deceleration – The fetal heart rate change starts when the IUP is at its peak and lags the change in intrauterine pressure by 45 seconds. FHR starts at 140 bpm, slows to 100 bpm, and then increases back to 140 bpm

Acceleration – The fetal heart rate lags the change in intrauterine pressure by 30 seconds. FHR starts at 140 bpm, increases to 175 bpm, and then decreases back to 140 bpm.

ProSim™ 2/3 Users Manual

To set a periodic FHR with IUP:

- If the Fetal Maternal screen shows in the display, go to step 3. If not, go to the Home screen of the Product and push the navigation buttons to highlight [FE/MA].
- 2. Push ENTER to show the Fetal Maternal screen.
- 3. Use the parameter selection procedure to set the FHR, IUP, and Period parameters

- 4. Push the navigation buttons to highlight START.
- 5. Push ENTER to start the test. If the **Period** parameter is set to **Manual**, the simulation stops automatically after the IUP wave stops. Each time you push ENTER another IUP wave starts. If not set to Manual, the IUP wave repeats at the frequency set in the **Period** parameter until the simulation is stopped.

To stop the simulation, highlight **STOP** and push **ENTER**.

Figure 13. Fetal/Maternal Connections

Other Functions

The Product also simulates respiration and temperature. This section contains the procedures to set up the Product for these two functions.

Respiration Functions

The Respiration function lets you set five parameters of the respiratory waveform: Rate, Impedance, Baseline Impedance, Lead selection (left arm or left leg), and Apnea. To set the respiration waveform:

- 1. In the **Home** screen, push the navigation buttons to move the highlight to RESP.
- 2. Push ENTER to show the respiration screen in the display.

See the Function Navigation and Parameter Selection section to learn how to set the respiration parameter values. See the detailed specifications for range of parameter values. These parameters change the waveform that appears at the ECG posts along the top of the Product.

When the Apnea parameter is set to 12, 22, or 32, the apnea event starts immediately. When the event ends, the parameter is set to Off. You must set the parameter to 12, 22, or 32 to start another apnea event.

The values set for the baseline and lead parameters when the Product is turned off, become the power-up default values.

Temperature

Temperatures simulated by the Product are compatible with Yellow Springs, Inc. (YSI) Series 400 and 700 probes. The type of cable connected to the temperature jack sets the type of temperature probe simulated. Connect the temperature input of the UUT to the Temperature jack as shown in Figure 14.

To set temperature:

- 1. In the **Home** screen, push the navigation buttons to move the highlight to <u>TEMP</u>.
- 2. Push ENTER to show the temperature screen in the display.

See the Function Navigation and Parameter Selection section to learn how to set the temperature parameter value. See the detailed specifications for range of parameter values. These parameters change the temperature signal at the temperature connector.

Figure 14. Temperature Simulation Connections

Remote Operation

The Product has a USB device port that lets you control the Product remotely with a set of commands. To control the Product from a PC, connect the USB to a USB port on the PC. The PC must have the Windows XP, Vista, or Windows 7 or later operating system to control the Product.

To operate the Product from the PC, connect it to the PC as shown in Figure 15.

Figure 15. Remote Operation Connections

When connected to a PC with a Windows operating system, the Product will communicate through a PC COM port. Make sure the COM port parameters are set to:

- 9600 Baud
- No Parity
- 8 data bits
- 1 stop bit
- Hardware handshake set to off

Remote Commands

A remote command is made up of alphanumeric characters. The first character of a command must be alphabetic. The alphabetic characters can be upper or lower case.

- Special characters are:
- Carriage return (CR)
- Line feed (LF)
- Space (SP)
- Backspace (BS)
- Escape (ESC)

The Product will do a command when it receives a carriage return and/or line feed. Alphabetic characters are not case sensitive. When you type in a command, the backspace deletes the last recorded character and the escape key discards the complete command. When a command is complete, the Product sends a response that ends with a carriage return and line feed to the PC. Unless other data is sent back from the Product, the response is "OK" if the command is accepted by the Product. When a

command is not accepted by the Product, an error code shown in Table 8 is sent to the PC.

Table 8. Error Codes

Error Code	Description
ERR=00	No commands allowed at this time
ERR=01	Unknown command
ERR=02	Illegal command
ERR=03	Illegal parameter
ERR=04	Data corrupted
ERR=05	Unknown error
ERR=06	Option not installed
ERR=07	Incorrect password

While the Product is operated from the front panel (local mode) the remote interface will not respond to a command until the command REMOTE is sent to the Product through the USB port.

General Commands

Table 9 is list of the modes and their description.

Fable 9. Product Control States and Modes

Mode	Туре	Description
LOCAL	Local	Local control
RMAIN	Main	Main remote control
DIAG	Sub	Diagnostic tests remote sub-mode
CAL	Sub	Calibration remote sub-mode

Table 10 is a list of general commands that set the control states and modes of the Product. The table shows in which mode the command is recognized and the response the Product will send to the PC when the command is completed.

Table 10. General Commands

Command	Legal Mode	Returns	Description
REMOTE	LOCAL	RMAIN	Go to remote control
LOCAL	RMAIN	LOCAL	Go to local control
QMODE	All modes	See Table 10	Query the mode

Function Commands

The function commands are grouped by the function they support.

ECG Functions

Tables 11 and 12 are lists of commands that control the ECG functions of the Product. These are Normal-sinus ECG, ECG amplitude, adult/pediatric, ST elevation, ECG artifact simulation, pacemaker waveform, pacemaker amplitude, and pacemaker width.

Action	Command	
Normal Sinus		
30 bpm	NSR30	
40 bpm	NSR40	
45 bpm	NSR45	
60 bpm	NSR60	
80 bpm	NSR80	
90 bpm	NSR90	
100 bpm	NSR100	

Table 11. ECG Function Commands

Table 11. ECG Function Commands (cont.)		
Action	Command	
Normal Sinus (cont.)		
120 bpm	NSR120	
140 bpm	NSR140	
160 bpm	NSR160	
180 bpm	NSR180	
200 bpm	NSR200	
220 bpm	NSR220	
240 bpm	NSR240	
260 bpm	NSR260	
280 bpm	NSR280	
300 bpm	NSR300	
Amplitude ^[1]		
0.05 mV	NAS0.05	
0.10 mV	NAS0.10	
0.15 mV	NAS0.15	
0.20 mV	NAS0.20	
0.25 mV	NAS0.25	
0.30 mV	NAS0.30	

0.35 mV	NAS0.35
0.40 mV	NAS0.40
0.45 mV	NAS0.45
0.50 mV	NAS0.50
1.00 mV	NAS1.00
1.50 mV	NAS1.50
2.00 mV	NAS2.00
2.50 mV	NAS2.50
3.00 mV	NAS3.00
3.50 mV	NAS3.50
4.00 mV	NAS4.00
4.50 mV	NAS4.50
5.00 mV	NAS5.00
5.50 mV	NAS5.50
Adult/Pediatric ^[1]	
Adult	ADULT
Pediatric	PEDS

Table 11. ECG Function Commands (cont.)		
Action	Command	
ST Elevation ^[1]		
-0.8 mV	STD-0.8	
-0.7 mV	STD-0.7	
-0.6 mV	STD-0.6	
-0.5 mV	STD-0.5	
-0.4 mV	STD-0.4	
-0.3 mV	STD-0.3	
-0.2 mV	STD-0.2	
-0.1 mV	STD-0.1	
-0.05 mV	STD-0.05	
0 mV	STD0	
+0.05 mV	STD+0.05	
+0.1 mV	STD+0.1	
+0.2 mV	STD+0.2	
+0.3 mV	STD+0.3	
+0.4 mV	STD+0.4	
+0.5 mV	STD+0.5	
+0.6 mV	STD+0.6	

+0.7 mV	STD+0.7	
+0.8 mV	STD+0.8	
Artifact Simulation ^[1]		
Off	EAOFF	
50 Hz	EA50	
60 Hz	EA60	
Muscle EAMSC		
Wandering EAWNDR		
Respiration	EARESP	
1. Set the ECG rate before you set amplitude, ST elevation, and artifact.		

Table 12. Pacemaker Waveform Commands

Action	Command	
Waveforms		
Atrial Pacer	ATR	
Asynchronous pacer	ASN	
Demand frequent sinus	DFS	
AV sequential	AVS	
Noncapture	NCA	
Nonfunction	NFU	

Action	Command	
Amplitude ^[1]		
1 mV	PA1	
2 mV	PA2	
5 mV	PA5	
10 mV	PA10	
Width ^[1]		
0.1 mV	PA0.1	
0.5 mV	PA0.5	
1.0 mV	PA1.0	
1.5 mV	PA1.5	
2 mV	PA2.0	
1. Set the Pacemaker waveform before you set amplitude and width.		

Table 12. Pacemaker Waveform Commands (cont.)

Arrhythmia Functions

Table 13 is a list of the commands to simulate arrhythmias. These waveforms are grouped by supraventricular arrhythmia, premature arrhythmia, ventricular arrhythmia, and conduction defect.

Table 13. Arrhythmia Function Commands

Action	Command		
Supraventricular			
Atrial fibrillation, coarse	AF1		
Atrial fibrillation, fine	AF2		
Atrial flutter	AFL		
Sinus arrhythmia	SINA		
Missed beat	MB80		
Atrial tachycardia	ATC		
Paroxysmal atrial tachycardia	PAT		
Nodal rhythm	NOD		
Supraventricular tachycardia	SVT		
Premature			
Premature atrial contraction	PAC		
Premature nodal contraction	PNC		
Premature vent contraction left (PVC1), standard	PVC1S		

Table 13. Arrhythmia Function Commands (cont.)

Action	Command		
Premature (cont.)			
Premature vent contraction left (PVC1), early	PVC1E		
Premature vent contraction left (PVC1), R on T	PVC1R		
Premature vent contraction right (PVC1), early	PVC2S		
Premature vent contraction right (PVC1), early	PVC2E		
Premature vent contraction right (PVC1), R on T	PVC2R		
Multifocal PVCs	MF		
Ventricular			
PVCs 6 per minute	PVC6		
PVCs 12 per minute	PVC12		
PVCs 24 per minute	PVC24		
Frequency multifocal PVCs	FMF		
Begeminy	BIG		
Trigeminy	TRG		
Pair of PVCs	PAIR		

5 PVCs	RUN5		
11 PVCs	RUN11		
Ventricular tachycardia	VTC		
Ventricular fibrillation, coarse	VFB1		
Ventricular fibrillation, fine	VFB2		
Asystole ASY			
Conduction Defect			
First-degree block	1DB		
Second-degree block	2DB		
Third-degree block	3DB		
Right-bundle branch block	RBB		
Left-bundle branch block	LBB		

ECG Test Functions

Table 14 is a list of ECG test function commands. These commands are grouped by performance waveforms, performance wave amplitude, R-wave rate, R-wave width, and R-wave amplitude.

Table 14. ECG Test Commands		
Action	Command	
Performance Waves		
2 Hz square wave	SQU2	
0.125 Hz square wave	SQU.125	
2 Hz triangle wave	TRI2	
2.5 Hz triangle wave	TRI2.5	
30 bpm pulse wave	PUL30	
60 bpm pulse wave	PUL60	
0.5 Hz sine wave	SIN0.5	
5 Hz sine wave	SIN5	
10 Hz sine wave	SIN10	
40 Hz sine wave	SIN40	
50 Hz sine wave	SIN50	
60 Hz sine wave	SIN60	
100 Hz sine wave	SIN100	
Amplitude		
0.05 mV	PFA0.05	
0.10 mV	PFA0.10	
0.15 mV	PFA0.15	

0.20 mV	PFA0.20
0.25 mV	PFA0.25
0.30 mV	PFA0.30
0.35 mV	PFA0.35
0.40 mV	PFA0.40
0.45 mV	PFA0.45
0.50 mV	PFA0.50
1.00 mV	PFA1.00
1.50 mV	PFA1.50
2.00 mV	PFA2.00
2.50 mV	PFA2.50
3.00 mV	PFA3.00
3.50 mV	PFA3.50
4.00 mV	PFA4.00
4.50 mV	PFA4.50
5.00 mV	PFA5.00
5.50 mV	PFA5.50

Table	14.	ECG	Test	Commands	(cont.)

Action	Command		
R-Wave Rate			
R-wave at 30 bpm	RWR30		
R-wave at 60 bpm	RWR60		
R-wave at 80 bpm	RWR80		
R-wave at 120 bpm	RWR120		
R-wave at 200 bpm	RWR200		
R-wave at 250 bpm	RWR250		
R-Wave Width			
R-Wave width at 8 ms	RWW8		
R-Wave width at 10 ms	RWW10		
R-Wave width at 12 ms	RWW12		
R-Wave width at 20 ms	RWW20		
R-Wave width at 30 ms	RWW30		
R-Wave width at 40 ms	RWW40		
R-Wave width at 50 ms	RWW50		
R-Wave width at 60 ms	RWW60		
R-Wave width at 70 ms	RWW70		
R-Wave width at 80 ms	RWW80		

R-Wave width at 90 ms	RWW90		
R-Wave width at 100 ms	RWW100		
R-Wave width at 110 ms	RWW110		
R-Wave width at 120 ms	RWW120		
R-Wave width at 130 ms	RWW130		
R-Wave width at 140 ms	RWW140		
R-Wave width at 150 ms	RWW150		
R-Wave width at 160 ms	RWW160		
R-Wave width at 170 ms	RWW170		
R-Wave width at 180 ms	RWW180		
R-Wave width at 190 ms	RWW190		
R-Wave width at 200 ms	RWW200		
R-Wave Amplitude			
0.05 mV	RWA0.05		
0.10 mV	RWA0.10		
0.10 mV 0.15 mV	RWA0.10 RWA0.15		
0.10 mV 0.15 mV 0.20 mV	RWA0.10 RWA0.15 RWA0.20		
0.10 mV 0.15 mV 0.20 mV 0.25 mV	RWA0.10 RWA0.15 RWA0.20 RWA0.25		
0.10 mV 0.15 mV 0.20 mV 0.25 mV 0.30 mV	RWA0.10 RWA0.15 RWA0.20 RWA0.25 RWA0.30		

Table 14. ECG Test Commands (cont.)		
Action	Command	
R-Wave Amplitude (cont.)		
0.40 mV	RWA0.40	
0.45 mV	RWA0.45	
0.50 mV	RWA0.50	
1.00 mV	RWA1.00	
1.50 mV	RWA1.50	
2.00 mV	RWA2.00	
2.50 mV	RWA2.50	
3.00 mV	RWA3.00	
3.50 mV	RWA3.50	
4.00 mV	RWA4.00	
4.50 mV	RWA4.50	
5.00 mV	RWA5.00	
5.50 mV	RWA5.50	

Table 14. ECG Test Commands (cont.)

Respiration Function Commands

Table 15 is a list of respiration function commands. These commands are grouped by respiration lead, respiration baseline (impedance), respiration rate, respiration amplitude, and apena simulation.

Table 15. Respiration Function Commands

Action	Command	
Lead		
Lead LA	RLLA	
Lead LL	RLLL	
Baseline		
500 Ω	RB500	
1000 Ω	RB1000	
1500 Ω	RB1500	
2000 Ω	RB2000	
Rate		
0 BrPM	RR0	
15 BrPM	RR15	
20 BrPM	RR20	
30 BrPM	RR30	
40 BrPM	RR40	
60 BrPM	RR60	
80 BrPM	RR80	
100 BrPM	RR100	
120 BrPM	RR120	

Table 15. Res	piration	Function	Commands	(cont.))
---------------	----------	----------	----------	---------	---

Action	Command	
Amplitude		
0.2 Ω	RO0.5	
0.5 Ω	RO0.5	
1.0 Ω	RO1.0	
3.0 Ω	RO3.0	
Apena Simulation		
12 seconds	A12	
22 seconds	A22	
32 seconds	A32	
Continuously	AON	
Apnea off	AOFF	

Blood Pressure Function Commands

Table 16 is a list of blood pressure function commands. These commands are grouped by static pressure, dynamic pressure, and respiration artifact.

Action	Command			
	Channel 1	Channel 2	Channel 3	Channel 4
BP sensitivity to 5 μ V/V/mmHg	BPSNS5			
BP sensitivity to 40 μ V/V/mmHg		BPSI	NS40	
Zero each channel	P1S0	P2S0	P3S0	P4S0
Zero all channels		ZA	LL	•
Static Pressure Levels				
-5 mmHg static	NA	NA	P3S-5	P4S-5
-10 mmHg static	P1S-10	P2S-10	NA	NA
20 mmHg static	NA	NA	P3S20	P4S20
40 mmHg static	NA	NA	P3S40	P4S40
50 mmHg static	NA	P2S50	NA	NA
60 mmHg static	NA	NA	P3S60	P4S60
80 mmHg static	P1S80	NA	P3S80	P4S80
100 mmHg static	NA	P2S100	P3S100	P4S100
150 mmHg static	NA	P2S150	NA	NA
160 mmHg static	P1S160	NA	NA	NA
200 mmHg static	NA	P2S200	NA	NA

	Table To. Blood Tressure Function Commands (cont.)				
A = 41 = 12					
Action	Channel 1	Channel 2	Channel 3	Channel 4	
Static Pressure Levels (cont.)					
240 mmHg static	P1S240	P2S240	NA	NA	
320 mmHg static	P1S320	NA	NA	NA	
400 mmHg static	P1S400	NA	NA	NA	
Dynamic Waveforms					
Arterial at 120/80	P1ART	P2ART	P3ART	NA	
Radial at 120/80	P1RART	P2RART	P3RART	NA	
Left vent at 120/0	P1LV	P2LV	P3LV	NA	
Right vent at 25/0	P1RV	P2RV	P3RV	P4RV	
Pulmonary at 25/10	NA	P2PA	P3PA	P4PA	
Pulmonary at 10/2	NA	P2W	P3W	P4W	
Left atrium at 14/4	NA	P2LA	P3LA	NA	
Right atrium CVP at 15/10	NA	P2CVP	P3CVP	P4CVP	

Table 16. Blood Pressure Function Commands (cont.)

	Table To. Blood Tressure Function Commands (cont.)				
	A = 41 = 12	Command			
	Action	Channel 1	Channel 1	Channel 1	Channel 1
Dyna	mic Waveforms (cont.)				
	Start auto	NA	NA	NA	STSGAUTO
Swan-Ganz	Start manual	NA	NA	NA	STSG
	Insert (manual)	NA	NA	NA	INS
	Inflate (manual)	NA	NA	NA	INF
	Deflate (manual)	NA	NA	NA	DEF
	Pull back (manual)	NA	NA	NA	PLBK
Resp	iration Artifact				
Artifa	ct on	P1AOFF	P2AOFF	P3AOFF	P4AOFF
Artifa	ct off	P1AON	P2AON	P3AON	P4AON

Table 16. Blood Pressure Function Commands (cont.)

Other Function Commands

Table 17 is a list of commands for other Product functions. The other functions are temperature, cardiac-output wave/injectate, fetal heart rate, intrauterine-pressure wave, intrauterine-pressure period, and beeper.

Table 17. Other Function Commands

Action	Command	
Temperature		
0 °C	TO	
24 °C	T24	
37 °C	Т37	
40 °C	T40	
Cardiac-Output Wave/Injectate		
2.5 l/min	COW2.5	
5.0 l/min	COW5.0	
10.0 l/min	COW10.0	
Faulty injectate	COWFLT	
Left/right shunt	COWLRS	
Cal pulse	COWCAL	
Stop	COSTOP	
Injectate to 0 °C	COI0	

Injectate to 24 °C	COI24	
Fetal Heart Rate		
60 bpm	F60	
90 bpm	F90	
120 bpm	F120	
140 bpm	F140	
150 bpm	F150	
210 bpm	F210	
240 bpm	F240	
Intrauterine pressure		
Once	IUP1	
2 minute period	IUP2M	
3 minute period	IUP3M	
5 minute period	IUP5M	

Maintenance

▲ Marning

To prevent possible electrical shock, fire, or personal injury:

- Have an approved technician repair the Product.
- Use only specified replacement parts.
- Remove the input signals before you clean the Product.
- Batteries contain hazardous chemicals that can cause burns or explode. If exposure to chemicals occurs, clean with water and get medical aid.
- Do not put battery cells and battery packs near heat or fire. Do not put in sunlight.
- Do not disassemble the battery.
- Remove batteries to prevent battery leakage and damage to the Product if it is not used for an extended period.
- Do not short the battery terminals together.

For safe operation and maintenance of the Product:

• Keep cells and battery packs clean and dry. Clean dirty connectors with a dry, clean cloth.

- Repair the Product before use if the battery leaks.
- Be sure that the battery polarity is correct to prevent battery leakage.
- Do not keep cells or batteries in a container where the terminals can be shorted.
- Do not disassemble or crush battery cells and battery packs.

General Maintenance

Clean the case with a damp cloth and weak detergent. Do not use solvent or cleaners with abrasives.

<u>∧</u>∧ Warning

For safe operation and maintenance of the Product:

- Do not put fluid on the Product surface. Fluid leakage into the electrical circuitry can cause the Product to fail.
- Do not use spray cleaners on the Product. This can push fluid into the Product and cause electronic component damage.

ProSim™ 2/3 Users Manual

Battery Replacement

<u>∧</u> ∧ Warning

To prevent possible electrical shock, fire, or personal injury:

- Remove batteries to prevent battery leakage and damage to the Product if it is not used for an extended period.
- Be sure that the battery polarity is correct to prevent battery leakage.
- Batteries contain hazardous chemicals that can cause burns or explode. If exposure to chemicals occurs, clean with water and get medical aid.

When the charge in the batteries becomes low, a warning will show in the display. Replace the batteries immediately.

To replace the batteries:

- 1. Turn off the Product and remove all test leads.
- 2. Slide the battery door off on the rear of the Product. See Figure 16.
- 3. Remove the two 9-volt batteries and replace them with new ones. Use the correct battery orientation.
- 4. Install the battery door.

Figure 16. Battery Replacement

General Specifications

Power	Two 9-V alkaline batteries (IEC 6LR61, NEDA 1604A). Optional battery eliminator: 15 Vdc, 1.5 mA		
Battery Life	8 hours minimum		
Display	LCD Greyscale Display		
Size	14.0 cm x 20.6 cm x 4.5 cm (5.5 in x 8.2 in x 1.8 in)		
Weight	0.47 kg (1 lb 4 oz)		
Temperature			
Storage	25 °C to +50 °C (-13 °F to +122 °F)		
Operation	10 °C to 40 °C (50 °F to 104 °F)		
Humidity	10 % to 80 % non-condensing		
Altitude	2000 m (6,562 ft)		
Safety	IEC 61010-1, Pollution degree 2		
Electromagnetic Environment	IEC 61326-1, Portable		
EMC	Applies to use in Korea only. Class A equipment (Industrial Broadcasting & Communication Equipment)		
	[1] This Product meets requirements for industrial (Class A) electromagnetic wave equipment and the		

[1] This Product meets requirements for industrial (Class A) electromagnetic wave equipment and the seller or user should take notice of it. This equipment is intended for use in business environments and is not to be used in homes.

Detailed Specifications

ECG Waveform

ECG Reference	The ECG amplitudes specified are for Lead II,	, from the baseline to the peak of the R wave. All other
	leads are proportional in percentage per:	

Lead I	70 %
Lead II	100 %
Lead III	30 %
Lead V1	24 %
Lead V2	48 %
Lead V3	100 %
Lead V4	120 %
Lead V5	112 %

Lead V6	. 80 %
Normal Sinus Rhythm	. 12-lead configuration with independent outputs referenced to right leg (RL). Output to 10 Universal ECG Jacks, color-coded to AHA and IEC Standards.
Amplitude	. 0.05 mV to 0.45 mV (0.05 mV steps), 0.5 mV to 5.5 mV (0.5 mV steps)
Amplitude Accuracy	. ± 2 % of setting Lead II. All other leads ± 5 %
ECG Rate	. 30, 40, 45, 60, 80, 90, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, and 300 BPM
Rate Accuracy	. ±1 % of setting
ECG Waveform Selection	. Adult (80 ms) or pediatric (40 ms) QRS duration
Artifact (Superimposed)	. 50 and 60 Hz, muscle, baseline wander, respiration
ST-Segment Elevation	. Adult mode only0.8 mV to +0.8 mV (0.1 mV steps) Additional steps: +0.05 mV and -0.05 mV
Power-On Default	. 80 BPM, 1.0 mV, adult QRS, ST-segment elevation of 0 mV, and a P-R interval of 0.16 seconds

Pacemaker Waveform

Pacer-Pulse Amplitude	. 0 (off), 1, 2, 5, 10 mV ±10 % for lead II (reference lead) with other leads proportional as for performance
	waves.
Pacer-Pulse Width	. 0.1, 0.5, 1.0, 1.5, 2.0 ms ±5 %
Pacing Rate	. 75 BPM
Paced Arrhythmias	Atrial 80 BPM Asynchronous 75 BPM Demand with frequent sinus beats Demand with occasional sinus beats Atrio-Ventricular sequential Noncapture (one time) Nonfunction
Power-On Default	. Off
Arrhythmia	

Baseline NSR	80 BPM
PVC Focus	Left focus, standard timing (except where specified)
Supraventricular Arrhythmia	Atrial fibrillation (coarse or fine), atrial flutter, sinus arrhythmia, missed beat (one time), atrial tachycardia, paroxysmal atrial tachycardia, nodal rhythm, and supraventricular tachycardia
Premature Arrhythmia	(All one-time events) Premature atrial contraction (PAC), premature nodal contraction (PNC), PVC1 left ventricular, PVC1 left ventricular – early, PVC1 left ventricular – R on T, PVC2 right ventricular, PVC2 right ventricular – R on T, and multifocal PVCs

Ventricular Arrhythmia	.PVCs (6, 12, or 24 per minute), frequent multifocal PVCs, bigeminy, trigeminy, multiple PVCs (one-time
•	run of 2, 5, or 11 PVCs), ventricular tachycardia, ventricular fibrillation (coarse or fine), and asystole
Conduction Defect	First-, second-, or third-degree AV block and right- or left-bundle-branch block
Power-On Default	None (off)

ECG-Performance-Tests

Amplitude	.0.05 mV to 0.45 mV (0.05 mV steps) 0.5 mV to 5.5 mV (0.5 mV steps)
Pulse Wave	.30 BPM, 60 BPM, with 60 ms pulse width
Square Wave	.2.0, 0.125 Hz
Triangle Wave	.2.0, 2.5 Hz
Sine Wave	.0.5, 5, 10, 40, 50, 60, 100 Hz
R-wave-Detection Waveform	.Haver-Triangle
R-wave Rate	.30, 60, 80, 120, 200, and 250 BPM
R-wave Width	.20 ms to 200 ms (10 ms steps) Additional Steps: 8, 10, and 12 ms
Rate Accuracy	.±1 %
Amplitude Accuracy	.±2 %, Lead II (Exception: ±5 % for R waves ≤20 ms)
Power-On Default	.None (off)

Respiration

Rate	0 (OFF), 15, 20, 30, 40, 60, 80, 100, 120 BrPM
Impedance Variations ($\Delta \Omega$)	0.2, 0.5, 1, or 3 Ω peak-to-peak variation of lead impedance
Delta Accuracy	±10 %
Baseline	500, 1000, 1500, 2000 Ω , Leads I, II, III
Accuracy Baseline	±5 %
Respiration Lead	LA or LL
Apnea Selection	OFF, 12, 22, or 32 seconds (one-time events), or continuous (Apnea ON = respiration OFF)
Power-On Default	20 BrPM, delta 1.0 Ω , 1000- Ω baseline

Blood Pressure

Input/output Impedance	300 Ω ±10 %
Exciter Input Range	2.0 V to 16.0 V rms

Exciter-Input Frequency Range	DC to 5000 Hz
Transducer Sensitivity	$5 \mu\text{V/V/mmHg}$ or 40 $\mu\text{V/V/mmHg}$
Pressure Accuracy	\pm (2 % of setting + 2 mmHg) (Valid for dc excitation only)
Static Levels, Channel 1	-10, 0, 80, 160, 240, 320, 400 mmHg
Static Levels, Channel 2	-10, 0, 50, 100, 150, 200, 240 mmHg
Static Levels, Channel 3 (ProSim 3 only)	-5, 0, 20, 40, 60, 80, 100 mmHg
Static Levels, Channel 4 (ProSim 3 only)	-5, 0, 20, 40, 60, 80, 100 mmHg
Dynamic Waveforms, Channel 1	Arterial: 120/80 Radial artery: 120/80 Left ventricle: 120/00 Right ventricle: 25/00
Dynamic Waveforms, Channel 2	Arterial: 120/80 Radial artery: 120/80 Left ventricle: 120/00 Right atrium (central venous or CVP): 15/10 Right ventricle: 25/00 Pulmonary artery: 25/10 Pulmonary-artery wedge: 10/2 Left atrium: 14/4
Dynamic Waveforms, Channel 3 (ProSim 3 only).	Arterial: 120/80 Radial artery: 120/80 Left ventricle: 120/00 Right atrium (central venous or CVP): 15/10 Right ventricle: 25/00 Pulmonary artery: 25/10 Pulmonary-artery wedge: 10/2 Left atrium: 14/4
Dynamic Waveforms, Channel 4 (ProSim 3 only).	Swan-Ganz sequence: Right atrium (CVP) Right ventricle RV) Pulmonary artery (PA) Pulmonary-artery wedge (PAW)
Respiration Artifact	BP delta changes from 3 mmHg to 16 mmHg
Output Connector	DIN 5-Pin
Power-On Default	0 mmHg

Temperature

Temperature	0 °C (32 °F), 24 °C (75.2 °F), 37 °C (98.6 °F), and 40 °C (104 °F)
Accuracy	±0.1 °C
Compatibility	Yellow Springs, Inc. (YSI) Series 400 and 700
Output Connector	DIN 4-pin
Power-On Default	0 °C (42 °F)

Cardiac Output (ProSim 3 Only)

Catheter Type	Baxter Edwards, 93a-131-7f
Calibration Coefficient	0.542 (0 °C injectate), 0.595 (24 °C injectate)
Blood Temperature	37 °C (98.6 °F) ±2 %
Injectate Volume	10 cc
Injectate Temperature	0 °C or 24 °C ±2 % value
Cardiac Output	2.5, 5, 10 liters per minute ± 5 %
Faulty-Injectate Curve	Waveform for simulation available
Left-to-Right-Shunt Curve	Waveform for simulation available
Calibrated Pulse	1.5 $^{\circ}$ for 1 second (37 $^{\circ}$ to 35.5 $^{\circ}$)
Output Connector	DIN 7-Pin
Power-On Default	2.5 liters per minute, 0 °C injectate

Fetal / Maternal-ECG (ProSim 3 Only)

Fetal Heart Rate (Fixed)	.60, 90, 120, 140, 150, 210, and 240 BPM
Fetal Heart Rate (IUP):	.140 BPM at beginning, then varies with pressure
Intrauterine-Pressure Waveforms	Early deceleration, late deceleration, and uniform acceleration
Wave Duration	.90 seconds, bell-shaped pressure curve, from 0 mmHg to 90 mmHg and returning to 0 mmHg
IUP Period	.2, 3, or 5 minutes, and manual
Power-On Default	.FHR 120 BPM, early deceleration, manual

Computer Setup

USB Device Upstream Port	Mini-B connector for control by a computer
Baud Rate	9600
Parity	None
Stop Bits	1
Data Bits	8